METRIC AND TOPOLOGICAL SPACES: EXAM 2020/21
A. V. KISELEV

Problem $1(10+10 \%)$. (a) Let $\varepsilon>\varepsilon^{\prime}>0$. In a metric space ($X, \mathrm{~d} X$), can an open disk B_{ε} of larger radius ε be entirely and strictly contained, $B_{\varepsilon} \subsetneq B_{\varepsilon^{\prime}}$, 选 an open disk $B_{\varepsilon^{\prime}}$ of smaller radius ε^{\prime} ? (stâte and prove, e.g., by example)
(b) If there can be (a), then can the diameter of that disk B_{ε} of larger radius ε be greater than the diameter of the disk $B_{\varepsilon^{\prime}}$ of smaller radius ε^{\prime} ?

Problem $2(20 \%)$. Are the subsets $[0,1) \times[0,1)$ and $[0,1] \times[0,1)$ of Euclidean plane \mathbb{E}^{2} homeomorphic or not?
(Either prove the impossibility of any homeomorphism ~ or describe one homeomorphism \sim explicitly.)

Problem 3 (20\%). Let $(X, \mathrm{~d} x)$ be a metric space and $\left\{U_{i} \mid i \in I\right\}$ be a family of connected subsets $U_{i} \subseteq X$ such that $U_{i} \cap U_{j} \neq \varnothing$ for all $i, j \in \mathcal{I}$. Prove that the union $U=\bigcup_{i \in I} U_{i}$ is connected.
Problem 4 (20\%). Suppose for every $n \in \mathbb{N}$ that V_{n} is a nonempty closed subset of a compact space \mathcal{X} with $V_{n} \supseteq V_{n+1}$. Prove

$$
\bigcap_{n=1}^{+\infty} V_{n} \neq \varnothing .
$$

Problem 5 (20\%). Let $(X, \mathrm{~d} x$) be a non-empty complete metric space and $f, g: X \rightarrow X$ two Banach contractions of X. Does there always exist a point $x_{0} \in X$ such that $f\left(g\left(x_{0}\right)\right)=x_{0}$?
(state and prove)

