METRIC AND TOPOLOGICAL SPACES: EXAM 2020/21

A. V. KISELEV

Problem 1 (10 + 10%). (a) Let $\varepsilon > \varepsilon' > 0$. In a metric space $(\mathfrak{X}, d_{\mathfrak{X}})$, can an open disk B_{ε} of larger radius ε be entirely and strictly contained, $B_{\varepsilon} \subseteq B_{\varepsilon'}$, if an open disk $B_{\varepsilon'}$ of smaller radius ε' ? (state and prove, e.g., by example) (b) If there can be (a), then can the diameter of that disk B_{ε} of larger radius ε be greater than the diameter of the disk $B_{\varepsilon'}$ of smaller radius ε' ?

Problem 2 (20%). Are the subsets $[0, 1) \times [0, 1)$ and $[0, 1] \times [0, 1)$ of Euclidean plane \mathbb{E}^2 homeomorphic or not?

(Either prove the impossibility of any homeomorphism \sim or describe one homeomorphism \sim explicitly.)

Problem 3 (20%). Let $(\mathfrak{X}, d_{\mathfrak{X}})$ be a metric space and $\{U_i \mid i \in I\}$ be a family of connected subsets $U_i \subseteq \mathfrak{X}$ such that $U_i \cap U_j \neq \emptyset$ for all $i, j \in I$. Prove that the union $U = \bigcup_{i \in I} U_i$ is connected.

Problem 4 (20%). Suppose for every $n \in \mathbb{N}$ that V_n is a nonempty closed subset of a compact space \mathfrak{X} with $V_n \supseteq V_{n+1}$. Prove

$$\bigcap_{n=1}^{+\infty} V_n \neq \emptyset.$$

Problem 5 (20%). Let $(\mathcal{X}, d_{\mathcal{X}})$ be a non-empty complete metric space and $f, g: \mathcal{X} \to \mathcal{X}$ two Banach contractions of \mathcal{X} . Does there always exist a point $x_0 \in \mathcal{X}$ such that $f(g(x_0)) = x_0$?

(state and prove)